Modified Error Bounds for Matrix Completion and Application to RL
نویسندگان
چکیده
In matrix completion under noisy measurements, most available results assume that there is an a priori bound on the Frobenius norm of noise, and derive bounds residual error. this letter, we obtain “component-wise” error, based a similar noise. This among first such results. As in our earlier paper, choose locations samples to correspond edge set Ramanujan bigraph. One recent application deriving nearly optimal action-value functions Reinforcement Learning (RL), which illustrated through examples. The presented here are only sufficient conditions. Then illustrate numerical simulations considerable room for improvement conditions derived here. problem future research.
منابع مشابه
Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion
We propose a general framework for reconstructing and denoising single entries of incomplete and noisy entries. We describe: effective algorithms for deciding if and entry can be reconstructed and, if so, for reconstructing and denoising it; and a priori bounds on the error of each entry, individually. In the noiseless case our algorithm is exact. For rank-one matrices, the new algorithm is fas...
متن کاملMistake Bounds for Binary Matrix Completion
We study the problem of completing a binary matrix in an online learning setting. On each trial we predict a matrix entry and then receive the true entry. We propose a Matrix Exponentiated Gradient algorithm [1] to solve this problem. We provide a mistake bound for the algorithm, which scales with the margin complexity [2, 3] of the underlying matrix. The bound suggests an interpretation where ...
متن کاملError Bounds for Linear Matrix Inequalities
For iterative sequences that converge to the solution set of a linear matrix inequality, we show that the distance of the iterates to the solution set is at most O(2 ?d). The nonnegative integer d is the so{called degree of singularity of the linear matrix inequality, and denotes the amount of constraint violation in the iterate. For infeasible linear matrix inequalities, we show that the minim...
متن کاملapplication and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples
ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...
15 صفحه اولError Bounds for Eigenvalue and Semidefinite Matrix Inequality Systems
In this paper we give sufficient conditions for existence of error bounds for systems expressed in terms of eigenvalue functions (such as in eigenvalue optimization) or positive semidefiniteness (such as in semidefinite programming).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Control Systems Letters
سال: 2022
ISSN: ['2475-1456']
DOI: https://doi.org/10.1109/lcsys.2021.3133798